MATH 2050 - Intervals
(Reference: Bartle §2.5)
We now discuss some nice subsets of \mathbb{R} called "intervals". $\exists 9$ types of interacts (closed/open, bad /unbid)

Notation: Given $a, b \in \mathbb{R}, a<b$.

$$
\begin{aligned}
& (a, b):=\{x \in \mathbb{R} \mid a<x<b\} \\
& {[a, b]:=\{x \in \mathbb{R} \mid a \leq x \leqslant b\}} \\
& (a, b]:=\{x \in \mathbb{R} \mid a<x \leq b\} \\
& {[a, b):=\{x \in \mathbb{R} \mid a \leq x<b\}}
\end{aligned}
$$

"bod intervals"

$$
\begin{aligned}
& (a, \infty):=\{x \in \mathbb{R} \mid a<x\} \\
& {[a, \infty):=\{x \in \mathbb{R} \mid a \leq x\}} \\
& (-\infty, b):=\{x \in \mathbb{R} \mid x<b\} \\
& (-\infty, b]:=\{x \in \mathbb{R} \mid x \leq b\} \\
& (-\infty, \infty)=: \mathbb{R}
\end{aligned}
$$

"unbid intervals"

Def?: Length $(I):=b-a>0$
Q: When is $S \subseteq \mathbb{R}$ an "interval"?
A: "connectedness" (MATH 3070)
Thu: (Characterization of intervals)
Let $S \subseteq \mathbb{R}$. Suppose
(i) $\exists S_{1}, S_{2} \in S$ st. $S_{1} \neq S_{2}$
*(ii) If $x, y \in S, x<y$, then $[x, y] \subseteq S$.
Then. S is an internal. [Note: could be untold.]
Picture:

NOT connected:

Proof: We just treat the case $S \subseteq \mathbb{R}$ is bod.
Picture:

Completeness Property $\Rightarrow a:=\inf S, b:=\sup S$ exist in \mathbb{R}
By (i^{\prime}). We have $a \leqslant S_{1}<S_{2} \leq b \Rightarrow a<b$.
Claim: $(a, b) \subseteq S$
Pf of Claim: Take any $x \in(a, b)$, ie $a<x<b$
Want to show: $x \in S$.
Since $x>a=\inf S$, it cannot be a lower bd of S. ie. $\exists S^{\prime} \in S$ st. $S^{\prime}<x$
Since $x<b=\sup S$. it cannot be an upper bd of S

$$
\text { i.e. } \exists S^{\prime \prime} \in S \text { s.t. } x<S^{\prime \prime}
$$

By (ii), $\left[S^{\prime}, s^{\prime \prime}\right] \subseteq S$ but $x \in\left[s^{\prime}, s^{\prime \prime}\right] \Rightarrow x \in S$.
This implies $S=(a, b)$ or $[a, b)$ or $(a, b]$ or $[a, b]$. depending on whether inf $S=a \in S$ or $\sup S=b \in S$.

Note: $I_{1}, I_{2} \subseteq \mathbb{R}$ intervals $\Rightarrow I_{1} \cap I_{2}$ is always an interval.
But $I_{1} \cup I_{2}$ might not be.

Q: What about $\bigcap_{i=1}^{\infty} I_{i}$?
Thm: ("Nested Interval Property" NIP)
Let $I_{n}:=\left[a_{n}, b_{n}\right], n \in \mathbb{N}$, be a seq. of closed and bounded intervals which are "nested":

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots \supseteq I_{n} \supseteq I_{n+1} \supseteq \cdots \ldots \ldots \ldots
$$

Then. $\quad \bigcap_{n=1}^{\infty} I_{n} \neq \phi$.
Moreover, if $\inf \left\{\operatorname{Length}\left(I_{n}\right) \mid n \in \mathbb{N}\right\}=0$, then $\bigcap_{n=1}^{\infty} I_{n}=\{\xi\}$.
Picture:

Examples:

$$
\begin{aligned}
& \bigcap_{n=1}^{\infty}\left[0, \frac{1}{n}\right]=\{0\} \\
& \bigcap_{n=1}^{\infty}\left[0,1+\frac{1}{n}\right]=[0,1] \neq \phi .
\end{aligned}
$$

Note that all conditions in the theorem cannot be dropped.

Non-examples:
(1) $\bigcap_{n=1}^{\infty}\left(0, \frac{1}{n}\right)=\phi \quad$ not closed!
(2) $\bigcap_{n=1}^{\infty}[n, \infty)=\phi$ not bad! n $n+1$ [ul Rumens \mathbb{R}
(3) $\quad \bigcap_{n=1}^{\infty}[n, n+1]=\phi \quad$ not nested!

Proof of Thun:
Recall: $I_{n}=\left[a_{n}, b_{n}\right]$, where $a_{n} \leq b_{n} \forall n \in \mathbb{N}$.
Nested $\Rightarrow a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq b_{n} \leq b_{n-1} \leq \cdots \leq b_{2}$ - $b_{1} \quad \forall n \in \mathbb{N}$
Consider $\phi \neq S:=\left\{a_{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}$.
Note that S is bod above since $a_{n} \leq b_{1} \quad \forall n \in \mathbb{N}$.
By Completeness Property, $\xi:=\sup S \in \mathbb{R}$ exists.
Claim: $\xi \in \bigcap_{n=1}^{\infty} I_{n}$ (hence $\bigcap_{n=1}^{\infty} I_{n} * \phi$).
Pf of Claim: Want: $\xi \in I_{n} \quad \forall n \in \mathbb{N}$, ie. $a_{n} \leq \xi \leq b_{n}$

- $\xi=\sup S$ is an upper bd. $\Rightarrow \xi \geqslant a_{n} \quad \forall n \in \mathbb{N}$
- To see why $\xi \leq b_{n} \forall n \in \mathbb{N}$, we argue by contradiction.

Suppose NOT, ie. $\xi>b_{m}$ for some $m \in \mathbb{N}$ $\xi=\sup S \Rightarrow b_{m}$ is NOT an upper bod for S

$$
\Rightarrow \exists k \in \mathbb{N} \text { st } b_{m}<a_{k}
$$

contradiction!
Case 1: $m<k \quad \Rightarrow \quad b_{k} \leqslant b_{m}<a_{k} \leqslant b_{k}$
Case 2: $m \geqslant k \quad \Rightarrow \quad b_{m}<a_{k} \leq a_{m}$
For the rest of the theorem, leave as exercise.
\qquad
Cor: \mathbb{R} is uncountable.
Pf: It suffices to show $[0,1]$ is uncountable.
Argue by contradiction. Suppose [0.1] is countable.
Then we can list them all into a sequence:

$$
\begin{equation*}
[0,1]=\left\{x_{1}, x_{2}, x_{3}, x_{4}, \ldots \ldots\right\} \tag{*}
\end{equation*}
$$

Define a seq of rested, closed, bd intervals $\tau_{n}, n \in \mathbb{N}$ as follow:

- choose $I_{1} \subseteq[0.1]$ sit $x_{1} \notin I_{1}$
- choose $I_{2} \subseteq I_{1}$ sit $X_{2} \& I_{2}$

- choose $I_{n} \subseteq I_{n-1}$ sit $x_{n} \oplus I_{n}$

By NIP, then $\bigcap_{n=1}^{\infty} I_{n} \neq \phi$. Suppose $\xi \in \bigcap_{n=1}^{\infty} I_{n}$.
$\Rightarrow \xi \in I_{n} \quad \forall n \in \mathbb{N} \Rightarrow \xi \neq x_{n} \quad \forall n \in \mathbb{N}$ Contradiction. $\xi \in[0.1] \quad$ to $(*) \quad 0$

